
The series in (ii) is not necessarily asymptotic. For example, if TR = i, % = r v, ~ = 
(4k + 2)/(2k + 3), and k is an integer, then qR = /~YKn(~YR)/Kn(~YR), where the index n = 
(2k + 1)/2. The MacDonald functions represent finite series by powers of u and the 
ratio of polynomials is expanded in an analogous series with a finite radius of convergence. 

NOTATION 

T, temperature; T K, temperature at rim of opening; T*, approximate value of temperature; 
qR, radial temperature gradient at edge of opening; qR*, approximate value of gradient; y, 
heat-transfer coefficient; r, 9, polar coordinates; R, radius of opening; an, bn, functions 
of radius; h, thermal conductivity; M n, L n, linear operators; Kn, MacDonald functions. 
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PHASE-TRANSITION KINETICS AND KINETIC EQUATIONS 

P. M. Kolesnikov and T. A. Karpova UDC 536.423 

Kinetic equations for gas-liquid droplet and liquid--gas bubbles systems are derived 
and studied by the characteristic and moment methods. 

In investigating the kinetics of phase transitions in multiphase media it is necessary 
to study formation of phase nuclei, together with their growth and decay. The kinetics of 
solid-phase nucleus formation in liquid condensation and gas-phase nucleus formation in boil- 
ing are described by the well-known equations of Vollmer, Becker and Deering, Frenkel' and 
Zel'dovich, Courtney, Probstein, Kantrowitz, et al. [i]. Further growth of these nuclei may 
be considered on the basis of growth or decay kinetics of unit nuclei for monodispersed media 
in the absence of nucleus interaction; however, for a large number of such nuclei this ap- 
proach must be replaced by a kinetic description. A number of studies have presented vari- 
ous kinetic equations for particle distributions over velocity and dimensions for the pro- 
cesses of vapor condensation, liquid or vapor crystallization [i, 2], and sublimation, boil- 
ing, and cavitation processes, but these studies usually consider distribution functions 
over size alone [5], or over velocity without consideration of size [6], or with considera- 
tion of size, but without distribution over velocity [i, 3]. 

We will present below a generalized kinetic equation for the particle distribution func- 
tion fi over time, coordinates, velocities, and particle size: 

f~ (t, x, y,  z, a, v, w, r). ( 1 )  

Change in the distribution functions will be described by kinetic equations which have 
the form 

For viscous liquid nuclei we may equate F i to the Stokes friction force ui = aui or to 
other well-known expressions, for example, 6 = a~u 2, etc. Further, we assume 
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u = % (u). (3) 

If we consider the free molecular mode of nucleus growth (decay), then the growth rate 
is defined by the well-known Knudsen formula 

= ak p - - p = ( T , )  
pb F ~  ' (4) 

which is independent of particle size r, or by other well-known formulas, for example, those 
of Maxwell or Fuchs for a continuous nucleus growth regime, as used in continual theory of 
dispersed systems. 

In order to be able to consider the possibility of particle coaggulation or fractiona- 
tion upon intercollisi0n, the collision integral may be expressed in the following form [4]: 

]st = 1 f~(~--Ol~ U1) f(O--~l~ ~)~(~1~ t)dv I -- 
o 

--[(v' g) i~(o'  o1)[(Ul' t) dOl-~ f '(~ u1)'(Ul' [(~ t) i o*'(Ol" 
o v o 

In certain cases for the collision integral one may take 

4, = 6 -- h0 , 

T r 

and in formation of monodispersed particles 

J , ,  = I6 (r - -  rcr ). 

We will consider Eq. (2) in the one-dimensional case, using Eq. 
gral. This equation may be solved by the characteristic method, as was done previously by 
one of the present authors for a plasma kinetic equation [7-9]. The operator I may be 
functional or integral. 

( 5 )  

(6) 

(7) 

(7) as the collision inte- 

The characteristic equations have the form 

dt = dx __ du = dr _ d[ (8)  
Or 

u % (u) r 16 ( r - - r c r ) -  ~ [ 

Considering that in a free molecular regime ~/3r = O, one can find a series of first inte- 
grals and use them to construct a general integral and find the explicit form of the distri- 
bution functions. Given an initially steady-state case, one can simply consider t as a par- 
ameter. 

From the relationship dx/u = du/@0(u) we find the first integral 

ff udu 
x = ~ + C ~ .  ( 9 )  

Let ~o(u) = au; then x = (u/a.) + Cx, and for ~o(U) = au 2 we have x = (i/a)In u + C,. In 
the stationary case we may write r = uz' (x); then dx/u = dr/uz'(x) gives the following inte- 
gral: 

z (x) + C2 = r, (10) 
where 

Finally, 

x 

~ ~ p - -  p| (T, )  dx. Z (x) 
Pb J u V 2~zRT 

XI  

f rom t h e  r e l a t i o n s h i p s  d x / u  = d f ] [ I  (x) ~ ( r  -- r c r )  ] we o b t a i n  y e t  a n o t h e r  i n t e g r a l :  

f = dx! 8 (r - -  rcr I = " / (D  8 [z (~) + C 2 - -  rcr (~)1 a~ + (7 3. u u(~)  " " 
X1 XI 

(ll) 
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If we use the boundary conditions for x = xo, u = uo, r = ro 

f = fo(xo, Uo, :o), 

by the form of the function fo we can determine the form of the distribution function f(x, 
u, r). 

In the nonstationary case the problem is somewhat more complex, since not all the inte- 
grals of Eq. (8) can be found in explicit form. As before, Eq. (9) is valid. The relation- 
ship dt = dx/u must be considered as a definition of u; however, the integral of the system 
dr = r(dx/u) cannot be found without knowledge of the concrete form of 9; i.e., we have 

r=  ~r dx +Cz; (12) 
J U 

therefore, Eq. (ii) takes on the more general form 

[= -u-(~I(~' t)l) 6 . ~ dXu +C2--~r (~' t) d~-}-C (13) 
x l  X 1 

The construction of the distribution function in explicit form becomes correspondingly more 
complicated. 

The generalization to construction of distribution functions for particles of various 
types is obvious and can be performed by conventional methods [i0]. 

The distribution functions may be constructed through use of various asymptotic methods, 
such as that of Chapman and Enskog, the moment method, etc. [7]. 

We define the n-th order moment of a distribution function as the quantity 

M (n) = f rnfdr. (14) 
r c r  

n 
Multiplying Eq. (2) successively by r and taking n moments of the kinetic equations, 

we obtain macroscopic characteristics averaged over size, which are important for construc- 
tion of models of polydispersed media. We will apply the equation obtained to the kinetics 
of vapor bubble formation and growth. 

The simplest model for change in bubble radius is based on Rayleigh's equation [ii] 

d2r 3 : d r ~  2 Po 
r + = - - ,  (i5) 

dF 2 k dt / p 

the integral of which for Po = const gives 

/ �9 r =  2 Po (Roa__r 3). 
3 pr a (16) 

If we consider the forces of gas pressure in the bubble, then the pulsation equation 

2 pl 

allows determination of the rate of change of radius 

Consideration of surface tension leads to the expression 

3r~ 1( Rav 2a) 
r i : + y  - - - ~  P~--P=+Porav---7- ,  = 0 '  

and also gives the radius-dependent growth rate 

-7 g- 3 p P~ V--1 
3a)] 2 l ( p  _p=) 2o" 1} ~/2 

p o + <  p ; �9 

( 1 7 )  

(18) 

(19) 

(20) 
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Dynamic bubble growth with consideration of liquid viscosity is described by the Ray- 
leigh-Ples set equation 

-- 4M . (21) r r  + - ~  p P~ - -  P| ~- P~ rs; r 

For all these equations ~r/3r = 0. Assuming that on the bubble there act resistive 
forces proportional to velocity u = ~0(u), with consideration of the relationships presented 
here it is simple to integrate Eq. (8). 

NOTATION 

fi, distribution function; t, time; x, y, z, coordinates; u, v, w, velocities; r, parti- 
cle szze; Jst, elasticand inelastic collision integral; I, number of nuclei formed per unit 
time; 6, Dirac function; rcr , critical nucleus size; B(v, vz), probability of fusion of 
particles with volumes v and vz upon collision; Y(v, v~), probability of formation of parti- 
cles with volume v upon.fractionation of particles with volume vz; Tr, relaxation time; u , 
particle acceleration; r, particle growth rate; ai, coefficients; T, temperature; p, pres- 
sure; ~k, accommodation coefficients; Pb, particle (droplet) density; To, saturation temper- 
~ture; p~, pressure at droplet boundary; go(u), specified law; Ci, integration constants; 
M(n), moments of distribution function; r, bubble radius; y, adiabatic index; pZ, liquid 
density; Ro, initial bubble radius; ~, surface tension; Pv, vapor pressure within bubble; p~, 
pressure far from bubble; po, initial vapor pressure within bubble. 
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